A proof of Weierstrass approximation theorem
Incorrect Password!
No content to display!
U2FsdGVkX1+otdgBa7bp9+KBYXRH0FCYCu9uHJwuSXG5J1GBoYioxDJCo0+AynABRfZGS/wgb8tpxo8LxO9mMO/5tFki/mQ8KfAA5aIb5g1cwOIpC3UnrZB+M02AnhjQb7XnTmcM/VBq4PcMvoxiDgoKfrLgfPvCuTfEOGooPo01Wp9AQphSp2jal0+8ITkEbHFupSx55oAa0JEIcqDcRivicXeAu1n5xUzJuDDEWuWmKQm7bAr1r56G8CE/qKBgivxefXNDDDd+7KP2CzvPg6zFbDWBAx1GBt8nYyrGGXnWInEPP7vqWmPmvvu3F+s+3gGesz14SA7zzJ8itZ1krUj7LLUbZxKdHFYQ+jszIy/U6TjdVRYs2op+8AxYOCsC4+S6vGI12P5e/SCf6WbAyM2wqdxiAGAjI2zhnkYKoA68hJ62PC5DzZf9vSDdnH0R/ezQHF4AwjX/wQLmopFpOnf7EX1d98YrJJT7DK1gjxyTu+UaYOZmLpc0NinXaQ0ti1+IobMX/qrZ5WOsnT0iyasKIev3Txgh1byxYm7FtfYzMGegNZXQIZIWzysdgFDvnCNiQ5KtKNrLu/NC96Y24a/0zgJmHIJGKfG5DTLDulfUvicCyZOW38p6RMHQeaqvuiWHi+0EcgM7nettbR9BNS6MsQqXf8XHPtqXvmxqjQFL11T9p8AXMHIoxKbPTkNYMH738ZoEaGzdwjEh87/DHK8tyIMHXGLpcAS+xrNeCKpSX5D/vX6qKcL97IUEDXDSDA9ia8lxq0tB/taUjhg/y1vf7wTN0ug1cJJbD/mLrjgoHK5dKHnIk5jnNvmnJABatYeRgfKLUP6xF8xdZEh3YPwNDKEeM/UvU/4apzVLeA4+Oh/3uc9qGopQHXqf9/0z9948QIzSDBcDSsxcozXa2muNKZrRDqWcIgRm17y4digsGc7vsc0Vs4DuL0AhvI2U9lHKiXrHbhfzJDWY/XisE3KKpzkVbdf9j4fjXYPXyKF7sjn00r5rjnCNdEkiIN39hywEGAXpnzGoblLbL1XYRgcBJUwI0oWlcWMdJO4dcYBwNQsH554jWLs2pmn/EU7knmAUhxR+04ykFlOyFs7z1s0GRth40R6vBoiNaKUDZ6fJrIjGu3SYMM7+XIqPL47cyrmWZxFVt2jNowXe6BQ8B61+XCm6KUldTNMmF67vEyM16hoR7MLQnywD8UweSnLOdpJe1wZuVB02ocxTSsqn/MwnFQHrSWnRF1SwiR0wroFxgxs5q7Z5knWbRJJIIPTHrWbPmU6Dr+rmoNIfVYWWLqH3Mqt1OAwCRlORDqd4GQd6a0+KZPVZ2NXIBCgIMcb3+76lVqE02F5PvDe8yZHYFkbrfXstSkP+sd0UFlIuzrr0pz36XU4jCyqRqO0YbIRjoWcA/Wf8huBf+P0dG11EpuZ1PsdTAom6YXeFdDx3tlZ2ooSTttvT8X9fJCx0Rd+xNgoWGNOtdjyH4hHxPXQWieyUPtcxD6L+9JJkbiHMz63Q8A8Dwrd43pH1hf7iinYtMkYKAeU5w1v3UqsGdvsCUeeIYfovMjQwNrC1HIgnmhkF1C0QILX3tgFxInFoA2GpwsNC5BpJ+H1NWLlyo249xZirHdW8qKJgE2hPY5dJHtzlncfOhJ2FoWHE8IScVgGclVfW7m97bggcC+PYIEgY1ho/BlF04T15DiH260jmhslLjBTzvm/Ol03bzMj/oDZrK45gv4JT7woDSuPc3gqH7+US/uATREXP54oEgJEEBL72nVjiSVbzvcbFGvh+i7Iyi2RZRu5v5LSrbCibTzApCp5FvkyaaXaom7xv+P67r7/TBgqXBwTwXbAhUuUwRXfok+Y6kQ0XhVdsqNWVUTvFnSh8IGrHZzcCCrEt5shIipnqQrodzZFp3CTBgYSnlYhTg3shF9UEaori3hFVcB+RbWo+wDGlRNRYxWOh6YFQ6x9AzCakMX+rB9Sqgrbaom1yNzcCMcXKJK62cz6c+mDYfpx2TnNc7gatg/n+VlL2/dobUgoKjJ9OigCuPoluU3Kc2qKsb8XtVocgO6bSs+fjRi5bTSe+AQTiBMP1B4w0HdFYO+GpcnpO+tiknYvEXapuY0qL7mOZiG6lBxa02ekMNA68GSq8HRVzKte8Rz/i7Da0RazG1mu942RjNi6d1gp+Agptc2y8Sqd/t8DidGnAZjUFDMQ2QnIHy7UzPiGJF12sK9pJXgzzgdaOrIFDQOB30VV6iOgMXwf8SCUclSytRnugvH09C7LGsBh8paCMqJlvf4qh0HsdRPuxGNA2V9/XXh91i0s3X5rzy6fnVIfzgCsFSWI6wKfruJL3Tb/105jOHz6IfC6PVA6CInE57iSYwSG7tUZNz3uhCI2ZtzxX5P0Xk42FgB46esryhEnNuLGTAymG6YFebpdEVESCQnJ3eHf/36CB08kwj1lJNP/azrUw7HqUls0h7nmYX9qhNDXZ0tJHOd2FI1QXva2OR39yGByRT3Y+SOuUaObDnQDKoolKh2fZQAAC40eTlTu/OgWMrXuwmAezRNXDvYxuDW2uzvkGGH30HwY+jmz2e1OzDANvJkvenXA1e5wjW67rnMaXYEeDTb/8atd+IzqYiHGh1Qu+l7Aka5usZ2GaUJP6oD6xTjC8DrUGRK0zZfExpgW3jYeFOWiWuSOkhzWa8H5hSy4PISSxn0GNCgz6p3j4BrW0qwiam4HWIeYIpdLEKtRs6JoXQaNZlvy0mTdcVvoi1iPfCf0YL5mR6m5Jg/IXK0cEjRaxVx/78UkeEUrCvTNH+Rgh4WKYDtbZPgvEMp9/22xPgKuznB0QTguCX+lUyJ6CubiA/yqZ0+0sZ9DER+blpvUG1wuU8SMcttjqve4bcaU7c3TEylZmfQSvVwr1Oe64yrkO+VaFpJnOdZ1ulJx+64CfneO7RQ5MqZlMvO0ugzyffjG3cHQTEfqCxk7lRjDP0t/5UduNTL51RlTi6XdwUw0WlOpYB0qcVlYw8s2Mi8vkXxWzKN3/606NsrAEMd7g67lqyFCOSQktlYyQXQPHg7z85LVziZX0lbanw9h7ayDeAPcdEFn04Sdoh7xPEmyWPySzzmCvYQmfaWnDrWTrPBWTCmvgNVIe8xQb0Cu05qfX7dvdV5Iwpq/qeW7rLy7qLkHiQ/9O+PJT2XbIUeSY5RyOIC5p9vYprwMDfD0IduoLYoN2rEysvaf/O18sIgff3Lyfnu87+LfNABRVFZNE2WlrHeNWkZJgYCTNzKTEPAWg41CEL5vJAc6/C1/MQ+tyTmwk3Y7p8wFbkFB5GKUOWSGLJWpjRnz8Zm2e/uHkVn0rneLVnH8CCuYrBnsKSaEds39815qgdKTVcYAKzri0rJnF2ne3z14NV79LwR07pbef+DYF5RqDGxUM4LRLBSG/CZRRAIfmgo17UKYOKHEYSNMztwr9EokTYikj6JLODka2IGDN4YOduMs15hB5ZPxHJ+gBlb5Mj0F/ZO+wYmyUB4prteIhUx5+CF48ZKDCxRAB30lA+RdMHyjfhkuW2ZHYwF/0XTomQZTrgmTxvA1Fg3iYJQ8nWWcmbuqVEd4cG9FRLfz1l9R1gnPf6+8eu7qLmeFUgfqqeNhuZMs8LIJ7VbWpfHbr2pw6Uwd/JonFwjxuGAyx/oERfcyBiq2z7CqmxPEtNE7L2UJ0HYGl3+OU8iz78Dn7Yzf7zdJWcibL7h/n/qzDWnKWfOdIzVtLoDe30Q8HEKYPFjTnLKyy18kaa77+ft10nY8Yuj9gYgkcBOonYC9iYWdlP4JO9flwrRpXeWLyQyheLfpLPypMouDuFpT2ZIBd07aQpseJtKHZIH15HcI5Vy8bl4Oy2s/BFQjZA4arR2M/nk65bAtv1WmLs7xIH/vUzEwff33+EDRdNp8qpiBCgMrXNG0LJPLNEA/22gedxCtaSAQkJcIVVUzKY90pNj0C+Cg9EoUzZVnXKl8A06AYRaRZkMmzi+R1SL9dkD0ochkIGGUnxO1tb8jakSJqD7QdGHRxOE6xYWKLlWGSyTf8yjowUA00TUnTm8bmQKK4q9MR1WHDZgs5XuY3p9bnk1TgvkznWKdoRe0/IpwpyT3ILIZfpWncGl6tBLNhb7EZMuGTE/Ja9TQfnSsFDyVR67pd4FvqAlf6BCJKEOlgY/FzzrGh/gDoCxvSzBnahIDy6jphSpnqaLyVjAfO8Grba/Ta4wXUVcqarzI1rS/jMVujl3UsEC0prcLzclivBR4/kKf/nIy11fqhZG+YRyYTnl3jdHrj+fk0X1u8dj8aUxES1O4iKEip88Wbk0UVpM9Etwyo7zezYU/q3Xm1kBBdNW7MSFQRzgLB3U0v6nTHn4MYU5eePmkXPGP2MmEtbf8wq9gnT/UH9i83erQIJyrdLm+wwoQgSF1lIPNKWN8UEAV4z7tJsLPPIojuMiC9wML0+PgIHb3R5O+3YKtlz6hr0mx8FI5/OHvf+89e42GYXTMIUooayUCnEsPRklBo5GXMNeW00KoSLmhPBCssFbr3prBYxnPwMs1LpkPF5onlPybLh0Yz7t9t21uUtBi2+1whYZUe9FuSlQ8LJIV6tL6bAFd9kE2bJXxj31xPO8R/Dmr4Itw8nR3ryhvRLvFcpwbTrcszTLNJH3mWT4NeE7f5p1S7TdWjU9qCzJk6yckMQ7L7dCHxdtX3YXXQVX2NzbVdYvtoOVpyrA00IksA6XO+K3V19ierhIcsiDoU15C/eNe+gItrCSClg7YZDRkh2yAirzBMSX7H30VvPFR4Mg/uDm3BrCWt+fjO1Ap9NPYob746/2bi1zoFQjlzdE41zp7d/1nqnTiUKi4Rvo0ZlLfPVNQSE4NmWChcMZP3LsNjFh8puBsSRRdL6qdEKDgQGJWEZ3tmzfIi9kz2/ApUmOguBEY51JjX7L+yw1AtDaA5WZ8q0QoLsSeac3O8edMKBxjJqo3Z71D+sbDf5Mov2KmM2PzW6PTK80GCBmt0UKjVHPd+DxcJmTblMLZJcy+jGprK31TRqft8FaianIN6GcX+RqAjxqcTO+UXiORLzQ0bHYuQ3zyKnjX4thcyXCDdTIYzdl0NRWbpB9b3HIKiTxMq8ZOpXA8qIsGfYnHvk22atAyz13uPBrEpZv/40VrhMKUahHr0/DluMIH2qQe1WKMC7P1/2wCHjCRJJftY92fu2Nkem1EvO2AezxTi9P8Ajks+3AwhWCdeYTm2QwiVPwTAIcg2gDb4Du7YYajNGVlsOQi+px/rs30bfQigZ52kqmH3lklg16Z6le6ePtroqwykNMOv0KylV0Iefyd+7D/rZHNExAFm4w6k4Z7VXET0kJrGd8y+3REs+Um6EwkJRnjKiBiCQk9rnwz11pQtuTbAwcpmObFUDl8H8Fzre+JiiW7ij4Glid+cBbSDU7TPhPzSZ4FWuSc4SQLla+8xX4gdCCIi93geRVJND+szwGOaJc3DlV5vE43VUFTFa+jdbpwQwHx0usxF3iuVL3wrYLYav0DdgbzGo0zl+URNXcn75bm3nAoThLY6kZ5/U3uf+8bOt3oTW+MkQiAXRMuyEHyGWmrfwIzN70AVO69D4GJddQyaCGOvT7Sbwzm/Zf/ig6OtscfoEgVO2Q3IVFnmk2KMcIpDyOvHeL8GOjqEc0Ex5fhVn3JOnfuoSjfptD8andBFv2hZrnfXnocxZxlHuyoFFmOgbo011OOx1OCP0aA3FA9TzUlQfQNGv9Mn/ja9frN5LcSRVEaaWJQqv61+Gg431klSiX9bUuNyNMPFM3qMamyzkwN15gl8VKJ6vCSk9XRH1WBnjPsTIRLJT+YUaEjBgJJqgN0psS1p9b8fa3WZkUALkGnrS+/tUigNWY1xulU8ivZCfer6ubNzlL4Khs/SzQb/FsNcQfwwgCXuXM8GwD0/X7lKcSBHjpQGODiSsOniOAmITg+zMQ14+bajLpGF6fbcnNmSt4tey5f5L+K//dujjUM611BX32w2tnXIrfH8Kif8lCbezzV5YyrVMqTB44j2acKjWvsThzTQaZ/FfNCqQPX6aN+D4T39ilmhr5z0pz/Fs9Dssiyf3nchQLlsbrAPXJNOHxoGOu9TlsV6ZER34oje45N75I4t3lJUH+GN2aLwCJ7K/IRbko2+1lT+2KYDUFImLiWzkJfs3bW21Pm6ZBceGy113HWrVJ9VWXBd7QaPQ2mS8bwDfQZpqzsLVpEEYAwyiO19aGNcdH6+XAyg5Tmy3ovy5vd4tm3PUhxkPa2Klv7R+8yBNZEcvdee1vFdkwb48VJ2r4Q3HM3RnLKS2pUbRgPq0K/vbfW5tfuaibJKaW4NSlPzdYrAjnKNyKEVEN+S29ff+BKVzC6W5r7B3OR+egvFNgnvMgHGt+Oi23OmmUHWwfMW9QZTK9XLuCEluXlQrj5WvpZx+U08v+5z/yQCpXOhUVRrv2jsRqSe97ZEIqRvclRrPkZJvBoiYMWGDFxiXCdywu8aaX6J54hmmw6eTeUNV3MVkgkDWBkultaFIx8YJc/O2WYoRa0iQXBvxjzCXgNybC84CnDv7OzW0be6ERR2Z1gYeRSl12v5zFYwA1FT3aCx646vysiZ8HjzE+M2i3/b0BO1IYL/64hMfEp5vnj4JY+8gG+1ra8TAy3hxEj7Wdv4cbWPD4Z6gW0lCWNQczHFEV/WuMtdU0ow0dc/Zw6YbCc+crZTk5yN04PH6xfFxz3gneKFY8suzMZIXQUOKqbQEvOECUkUnmKhC3f2+/yFCDz/HRgLcwmwBqwTP3Ds2Ozt9NGqbRWPU2/ZwdGA2qCe2q9PR+wrWOOhU1j8qao2UfAnt0BUdn86lsa6/WLjuS8d9MHGWQ9G88s0tYM0T4NZ+CVugfoSWjTC0NHrlDqvODUYzj73KDlda8mi9YaSuQPijxzLfPggaz1nmSFd6ATAr0dJsNtTCkDYXBS4QGLG4ssqqVV8p6dvuHMOMtMzAMI+up35Q5TsglSUZXOUbOy1GbwpiLHTrjGo02ZgMCq27nsgLqchmw53KIRKjqHXE+dL2KWIKh6z/cUtrc4gXThA2CbM+yahT6q+nxh4OgrPWqJtbKMUKQH9Sj8IGjd05TNrr/jFPxD7LDGwRHf7zRJwwhZdEpHSBG27h+cXIqy8q64e1Hm8E/N8SpLIhSZd4XzkGJlMbSGHZWrn0I93GlJIHI0s/4yKYoZm1LTe2m7x/NLIYGTYk9juPlYcdMwIOsSZIeEhTM+IIzRcuTyluxPo5bu2ZRjI1sO+qXP4mu1Adg1aULl+R7KLX1AXzAtntOxDz8ox34noVulWBGmf1y8xl34vVGqlDMNhoi2ycH5fYcWCPYnIPNR+S4Hyzxr/kuqPMXRvtwbOgFXtDdo3lk1VDRT9P9LFcatmSq8Kg9eRO/+pLcanTHfSih6lQDlhOpOyQ7OwSa6aT5AO7HORlm+cTWkAyOSPZKyMXdhN+H3t1eabDRredC+mx4D4fIr4FzEFASumq0trA0rkGA+pwh9wzRm5Ll1TdtvkdcgaZScGIR9UG+9y8vzG6popgqX2i4u48ab/zOKl1KeVwFhrmwaCoc8MtaE49do6dB7pY5i634mjT0PGjXNM/2WutQ1OAcbSnPuJM04I2RLWWqYC7gx8fOiJ5jjCcd43AgKJY/xoXhVmzkQOMLjV7h22VclX3Mio7+fsFDvNZsZRUPFnyj2Vf3GurZyyzRo3pN0f2RIUMa4z6q3uH1g5scBMJUepSQ6P+5YOaLqZ3nNqdwpWeaRGaAd7jkitEcUmf7jCJmgCQKPL9+5yE6uEsCq4Qy5Ui1PD0wy0y84vhFxkFa0kNqyjCvSyvRpZU1ysjgJifQmCJquXFGmz/GShxEE2yqV62iuEJPNjYe0bdzF03b3+R/wchZvajD49iH+nUTCN1E2P06oE3whiGHY0cUVES8HdyTa8GsnJB8lWNGepbmiOBvvTon2lQCj1kMkX3hW/Tyn0nh39Yykd/gg1rd3jdH7oapsX70hk/Au+7Bb4m6bn+8twH8ZSOyZPbMdF6wY4+Cf9gsZL67awOD89XspaKHuLLxqDKdwmjuLvvqQlR9HjiiCS6rkjUTbwIELQPF6FqJMx24e1ymNwmeWbZh5tXt2tlqOZgHLCcrjHYx6Uxu45emu+RvsECVUOH57ctuFEBKhlpzmGgtkO21coJEuTUGO3TEdmE3t82+G2G6J/X8pm/tdWkGIg8A/bx1yIfPkCwPdB9566fR5VPcXbcnEIPQhTCEK/MaUaolgW1vpky6aW1StKbTGCza6ElHy79xL0Rl+68+Rdu3O1EbMo1wjMm9I9jyW2YSJ8pjHa4S/TRCMEr2FnO7bDnzcmSVS7g7o13PAn5EztgOzcSoKS5+haezTI/1XyT6YcHP1rYlNTxHXCPWigYUAZ1D9v0ng4b6CwrlelAHk2RAHcxwEHNMMsBlABSXCqe02rJPR4AK3pMKwVuQ8cHuzSnbZ15xwqRVnLNcQvVSS/DEGbv8ps1cSY1jVUvifg/8NXYLJ5JFicagy6q4anwpUtxae+Ph0GcvvR3vebpGSu2J+J9bdxjDh/i1xXm/Ux4wjkvA9cZvAj05/uJkKokPWGVheK8BtehboWLVirKgYtVTTH/m+qTkx5YYrykbSRrJn4mwH0s7M1T5hWyvocihfZkU20kwKUn894SSjm2V5FCioAHguzBISgYw9uONcs6GnuIo3CDfsqhD6Br/3tMcmMQv55gB7U7st3wVs/6tehDyfaMLpB+gSwDJLw3IpkyzLSFZtZJpCjoqPdIvCRJ79FNivHX5OLiC9vfv80XLwf5CFn+laXdOk4+4OTBxMKbRbFy5WFV8tgvq4dDaNjjAsA21J2YKdEN5Ls8gzq73+1e3XH8OFCgRzVZurbpRATBBN1w6AOD3mzzuKnsmkhaL0a95UUqnI3G7FQxvx9FpWz265Eh4ETrh2fGjrP0pt6TkJk4iFOb5Qn9F56UqglLBPpTej8Awt1oMkxeyaN/HvS1XuZGZPkENM9L4m1DY9DaCBuza9yddny4iK0BW6jOOVvZph24QX6wPseLZTw6sP9NwAak5wMMOt61tCfOlc2zo4jljnEPZ4Bij4/i3jEwtiEXaoapGj0OSsHQis8kj9p8fk7uvhKQF3u9/NMWcTrJZf6Yz5hiE5dJZLV3wsPGfj3nU2DSOkH/GkVA9OY21EFozcUyE4Cs/2/fmLxKNfKeZV3JoS6UASRvKWrB1QIJ+o8wjIAEvAq9xes8vJMHa+9MAf4wVImrW13FooM7H0hko9dY5Z/al5yuGRIEjN/MHO0FQ1gUhtPm5cWKYfxfhHXQCuHdFIjpwrtQmVLUUwkkxPKtt2EuMjAMN6FPS7k50l0RCYyP01b7CgHDCMSgYHlGQJQb3kiJF2tZbdzbbX7aX+KT220oH1UVbl5LVbk63J1ByeBklhElZz9v8ccJN9+pYYgDYu8fd7k/stlNaqX7NoAgq2UJHjvYWhpCobUA3ZM2j2vq5c7GuKO942vuxJXogenfQISD9VEY/7IpuZmZND1HswW7KZRjfsGbWIgBNIYqp8IlrGjlv6unF1dgAedd+y6ljyy17SE9nKv/myxPB+1ZaVaarsWSbFwGiSYVTD2y133CdtjmgXclWegqKihWpHXT5fGORQ+ymnLAhNN1S2urYZzg7ItcmUqO/8agG2PzrlbQhLYOEtN/ihRDrMOhPVsBQ/IM8JwCIJjieIqERCSOdZxMQTlJ1Bhz/SOXm0RWQeAWCn4NTWaHuPueDUcnZ4wSzlOBI4SPRCriM85tvj3nsuXRl9qIt4HaaphpYwHSvYn879ZMWv9WOLAUNxwY2NqaIkoFYtUMViGZ0rZTU+ysd45Xct2V891mkpHlYNfipdXls+XKA+fFKw1QfPO72wYkZH2i1Cfxea4iRFYxH6FbDhoHlvI4ihjkoHNTN1kODap+XaYX7A+1VQ2wOUD+7LjOMXFA00Ziagq+goeW7wi
A proof of Weierstrass approximation theorem
http://blog.sinkpad.tech/2017/06/16/A-proof-of-Weierstrass-approximation-theorem/
#大学